Sunday, 5 January 2020

Types of Matrices

What is a matrix ?

                 A matrix is collection of numbers arranged into a fixed number  of rows and columns . Usually the numbers are real numbers. In general, matrices can contain complex numbers but we won't see those here. It can be written in either [ ] or ( ). Here is an example of a matrix with m rows and n columns : 
                                         Organization of a matrix
                                   
            The elements in a matrix A are denoted by aij , where i is the row number and j is the column number . The size of matrix is written : mxn 


Types of Matrices 

                       Matrices are distinguished on the basis of their order, elements and certain other conditions.There are several types of matrices but most commonly used are following : 


1. Row Matrix :  
                           A matrix is said to be a row matrix if it has only one row.
                              e.g.     A= [7  -0.8  4  -2]

2. Column Matrix : 
                                 A matrix is said to be a row matrix if it has only one column.
                               e.g.
                                                   Image result for example of column matrix"
3. Square Matrix :
                               A matrix is said to be square matrix if it has no of rows is equal to no of columns i.e. m=n . Its order is m for m*n matrix.
                          e.g.
                                    Image result for example of square matrix"


4. Null Matrix :
                                A matrix is said to be null matrix if all its elements are zero. It is also known as zero matrix
                          e.g. 
                            Image result for example of null matrix"
5. Diagonal Matrix :
                                              A square matrix is said to be diagonal matrix if  at least one element of principal diagonal is non-zero and all the other elements are zero, that is, square a matrix A= [Aij]n × n     is said to be diagonal matrix if aij=0 ,when i≠j. 
                                    e.g.
                                 Image result for example of diagonal matrix"                        
              Determinant of a diagonal matrix is multiplication of diagonal elements.

6. Scalar Matrix :
                              A diagonal matrix is said to be a scalar matrix if all the elements in its principal diagonal are equal to some non-zero constant ,that is a scalar matrix A=[Aij]nxn  is said to be a scalar matrix if 

  • aij=0 ,when i≠j
  • aij=k ,when i=j ,for some constant k.   
                                          e.g.
                                                          Image result for example of scalar matrix"     

 7. Identity/ Unit Matrix :
                                                         A diagonal matrix is said to be identity if all of its diagonal elements are equal to one ,denoted by I.
                                   e.g.
                                      Image result for example of identity matrix"
8. Upper Triangular Matrix :
                                                  An upper triangular matrix is square matrix where all the elements located below the diagonal are zeros.
                                           e.g.
                                   Image result for example of upper triangular matrix"

9. Lower Triangular Matrix :
                                                 A lower triangular matrix is square matrix where all the elements located above the diagonal are zeros.
                                e.g.
                                    Image result for example of upper triangular matrix"
Note: We can calculate determinant of lower/upper triangular matrix by multiplication of diagonal matrix .

10. Orthogonal Matrix :
                                        A square matrix is said to be an orthogonal matrix if the multiplication of a matrix and transpose of that matrix is equal to the identity matrix i.e. AAT=I

11. Idempotent Matrix :
                                       A square matrix is said to be an idempotent matrix if A2=A.

12. Involuntary Matrix : 
                                         A square matrix is said to be an involutary matrix if A2=I .

13. Symmetric Matrix :
                                         A square matrix is said to symmetric matrix if transpose of a matrix is equal to that (original) matrix , i.e AT=A or aij=aij .

14. Skew Symmetric Matrix:
                               A square matrix is said to be Skew Symmetric Matrix if transpose of a matrix is equal to the negative of the original matrix , i.e. AT=-A or aij=-aji .

15. Singular Matrix :
                                                        A square matrix is said to be singular matrix if determinant of matrix is equal to zero,|A|=0 .

16. Non-Singular Matrix :
                                            A square matrix is said to be non-singular matrix if determinant of matrix is not equal to zero, i.e. |A|≠0 .

17. Hermitian Matrix :
                                      A square matrix is said to be hermitian matrix if conjugate of transpose of matrix is equal to the original matrix .

18. Skew Hermitian Matrix :
                                              A square matrix is said to be skew hermitian matrix if conjugate of transpose of matrix is equal to the negative of original matrix.

1 comment:

Types of Matrices

What is a matrix ?                  A matrix is collection of numbers arranged into a fixed number  of  rows  and columns  . Usually the...